CSCI 6114 Fall 2023: Problem Set on P/poly

Joshua A. Grochow

August 31, 2023

Read before class:

- Arora & Barak §6.1 (in the freely available draft version is fine, ~ 6 pages)
- Homer & Selman §8.1, up to but excluding Theorem 8.3 (\sim 9 pages).

Additional resources:

- Sipser §9.3
- Du & Ko §6.2
- Hemaspaandra & Ogihara Complexity Theory Companion p. 276
- Wigderson §5.2.1.
- Moore & Mertens §6.5

To work on during class:

A circuit family is a sequence $C = (C_1, C_2, C_3, ...)$ of Boolean circuits C_i where C_i takes *i* inputs. The language decided by a circuit family *C* is $L(C) = \{x : C_{|x|}(x) = 1\}$. P/poly is the class of languages that can be decided by a circuit family of polynomial size, that is, where $|C_n| \leq \text{poly}(n)$.

- 1. Show that $\mathsf{P} \subseteq \mathsf{P}/\mathsf{poly}$.
- 2. Show that there are uncomputable languages in P/poly. Conclude that $P \neq P/poly$.

3. Definition: A circuit family C is P-uniform if there is a polynomialtime Turing machine that, on input 1^n , outputs a description of the circuit C_n .

Show that P-uniform P/poly is equal to P.

4. Given a class C of languages and a function $f \colon \mathbb{N} \to \mathbb{N}$, we define "C with f-bounded advice", denoted C/f, as the class of languages L such that there exists $L' \in C$ and there exist strings a_1, a_2, a_3, \ldots ("a" for "advice") with $|a_n| \leq f(n)$ such that for all x,

$$x \in L \iff (x, a_{|x|}) \in L'.$$

In other words, there is a single advice string a_n that helps L' decide membership in L for all strings x of length n.

Prove that P/poly (defined in terms of circuits as above) is equal to the union of advice classes $\bigcup_k \mathsf{P}/O(n^k)$. (Hence the notation " P/poly ".)

- 5. A language L is (polynomially) sparse if there is a polynomial p such that the number of strings in L of length $\leq n$ is at most p(n).
 - (a) Show that all sparse languages are in P/poly.
 - (b) Show that $\mathsf{P}/\mathsf{poly} = \mathsf{P}^{\mathsf{SPARSE}}$, that is, P/poly is the class of languages L such that there is some sparse language S and L reduces to S by a polynomial-time oracle Turing machine (denoted $L \leq_T^p S$).
- 6. Show that $P \neq P/O(\log n)$, by showing that the latter has uncomputable languages.
- 7. (a) Show that search reduces to decision for SAT: there is a function in $\mathsf{FP}^{\mathsf{NP}}$ that, given a Boolean formula φ , either outputs a satisfying assignment to φ (if one exists), or correctly reports that no satisfying assignments exist.
 - (b) Despite Question 6, show that $\mathsf{NP} \subseteq \mathsf{P}$ iff $\mathsf{NP} \subseteq \mathsf{P}/O(\log n)$.
 - (c) What can you say if $NP \subseteq P/poly$?
- 8. It is natural to wonder whether uncomputable languages are the only thing standing in the way of P being equal to P/poly. Here, show that's not the case, i.e., that P/poly \cap COMP \neq P, i.e., that there are computable languages in P/poly that aren't in P. *Hint:* Pick a hard but computable language, far outside of P, and encode it in unary.

You may assume the Time Hierarchy Theorem: if $T(n) \log T(n) < o(T'(n))$, then $\mathsf{DTIME}(T(n)) \subsetneq \mathsf{DTIME}(T'(n))$. How large must T' be to get this to work against P?